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We demonstrate experimentally the existence of a family of gravity-induced finite- 
amplitude water waves that propagate practically without change of form in shallow 
water of uniform depth. The surface patterns of these waves are genuinely two- 
dimensional, and periodic. The basic template of a wave is hexagonal, but it need not 
be symmetric about the direction of propagation, as required in our previous studies 
(e.g. Hammack et al. 1989). Like the symmetric waves in earlier studies, the asymmetric 
waves studied here are easy to generate, they seem to be stable to perturbations, and 
their amplitudes need not be small. The Kadomtsev-Petviashvili (KP) equation is 
known to describe approximately the evolution of waves in shallow water, and an 
eight-parameter family of exact solutions of this equation ought to describe almost all 
spatially periodic waves of permanent form. We present an algorithm to obtain the 
eight parameters from wave-gauge measurements. The resulting KP solutions are 
observed to describe the measured waves with reasonable accuracy, even outside the 
putative range of validity of the KP model. 

1. Introduction 
An earlier paper by Hammack, Scheffner & Segur (1989, hereinafter called Part 1 )  

reported an experimental study of gravity-induced waves that propagate practically 
without change of form in shallow water of uniform depth. Those waves had finite 
amplitudes, and their surface patterns were periodic in two spatial dimensions and in 
time. The spatial pattern of the waves was a hexagon that was symmetric about the 
direction of wave propagation. The waves were predicted with reasonable accuracy by 
a family of exact solutions of an equation due to Kadomtsev & Petviashvili (1970) 
known as the KP equation: 

( A  + (iff, +f,,,), + 3f,, = 0, 
where subscripts denote partial derivatives. In a second set of experiments (Hammack, 
Scheffner & Segur 1991), more effort was made to reduce depth variations in the 
laboratory basin, and the theoretical-experimental agreement improved further. Both 
of these studies were preceded by Peregrine (1985), who also observed hexagon-like 
waves of permanent form but who argued against that interpretation. 

Within the KP equation, almost all real-valued spatially periodic waves of permanent 
form are characterized by a family of exact solutions with eight free parameters: six 
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dynamic parameters associated with wavelengths and wave amplitudes, plus two 
arbitrary phases (cf. Segur & Finkel 1985). Typically, these waves have asymmetric 
surface patterns. The two experimental papers cited above tested only a subset of these 
waves, called symmetric waves, which have only (3 + 2) parameters. Figure 1 shows 
photographs of both symmetric and asymmetric water waves. 

In this paper, we describe an experimental study of two-dimensional spatially 
periodic asymmetric waves that propagate practically without change of form in 
shallow water of uniform depth. (In the terminology used in this paper, surface waves 
are either ‘one-dimensional’ or ‘two-dimensional’, depending on the nature of their 
surface patterns. The velocity fields associated with the waves are one dimension 
higher.) Our three main results for asymmetric waves are consistent with our earlier 
results for symmetric waves : 

(i) In shallow water of uniform depth, there exist spatially periodic waves with finite 
amplitudes and fully two-dimensional surface patterns. These waves are easy to 
generate, they propagate with nearly permanent form, and they seem to be stable with 
respect to perturbations in initial conditions and to weak external forcing (e.g. due to 
viscosity or to variations in bottom depth). The amplitudes of the waves need not be 
small. 

(ii) The basic template of the two-dimensional wave pattern is a six-sided figure (i.e. 
a hexagon), with a broad, flat trough surrounded by six narrow wave crests (see figure 
1).  Wave crests opposite each other in this hexagon are parallel, they are equal in length 
and in wave amplitude, and they can be identified with each other in order to reproduce 
the periodic pattern. 

(iii) Over the range of parameter values that we tested, these water waves are 
predicted with reasonable accuracy by the full eight-parameter family of KP solutions 
of genus 2. This range extends well beyond the putative range of validity of the KP 
equation as an approximate model of waves in shallow water (i.e. beyond the range of 
nearly one-dimensional waves of small amplitude in shallow water). In this sense, the 
KP model provides a convenient means to learn about hexagonal waves of permanent 
form, but their mathematical existence and stability seem to be independent of the KP 
model. 

Our primary objective in this study is to establish experimentally the existence and 
properties of asymmetric hexagonal waves of permanent form in shallow water of 
uniform depth. To this end, we present the results of fifteen experiments, which exhibit 
some of the variety of waves of this form. Our secondary objective is to determine how 
accurately the full eight-parameter family of KP solutions of genus 2 describe the 
measured waves. To this end, we present an algorithm that uses measurements from an 
array of wave gauges to obtain the eight parameters of the KP solution that ‘best’ fit 
the measured waves. By design, the algorithm uses only wave-gauge measurements 
(ignoring the known data used to program the wavemaker) so that it can be applied 
to gauge-array data in more complex wave environments in the laboratory and in the 
field. Fifteen experiments are far too few to determine the parameter range for KP 
theory to be applicable, and our experiments were not chosen with that objective in 
mind. In fact, most of our experiments have parameters that lie outside the putative 
range of validity of KP theory. (Some of our waves have near-breaking heights and 
strongly two-dimensional surface patterns.) We reiterate our belief that the KP model 
is convenient but not essential to describe periodic waves of permanent form in shallow 
water. 

A summary of the contents of this paper is as follows. In $2, we review the main ideas 
needed to compare KP solutions of genus 2 with experimental data on waves in shallow 
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FIGURE 1. Mosaic of two overhead photographs, showing surface patterns of waves in shallow water. 
Experiment: (a) KP38.50204; (b) KP400203-300303; (c) KP220203-110403. Each of these wave 
patterns has a basic hexagonal template; one such hexagon is drawn in figure 1 (b). 



98 J .  Hammack, D .  McCallister, N ,  SchefSner and H. Segur 

water. We describe experimental procedures and results in $ 3 .  The procedures are 
similar to those used in Part 1, but the experimental data here are more complicated. 
The main theoretical problem addressed in this paper is the following. Given wave- 
gauge data from a particular experiment, find the eight parameters of the KP solution 
of genus 2 that best fit these data. We present an algorithm to solve this problem in an 
Appendix to the paper, and we use the algorithm in $4 to compare KP theory with the 
results of fifteen different experiments. In a sense, our procedure can be viewed as a 
complicated form of surface-fitting (i.e. two-dimensional curve fitting), with no 
demonstrated predictive power. However, we recorded more data than we used to find 
the KP solution, and in $4 we also test the accuracy of some concrete predictions of 
the theory. The hexagonal waves studied in this paper and in Part 1 seem to be the 
simplest non-trivial waves of permanent form that are periodic and two-dimensional 
in shallow water. This identification suggests that they ought to occur frequently in 
natural oceanic settings. In 9 5,  we present some observations of oceanic waves similar 
to those discussed in this paper. 

2. Review of KP theory 
The KP equation, 

u1+ 6 f f z  +fz,z)z + 3f,, = 0, 

describes approximately the slow evolution of gravity-induced waves on water of 
uniform depth when the waves are assumed: (i) to have horizontal lengthscales much 
longer than the fluid depth (this assumption is also called ‘shallow water’); (ii) to 
propagate primarily in one direction (the x-direction), with only weak variations in the 
transverse y-direction; and (iii) to have small-to-moderate amplitudes. The KP 
equation is not well-posed as it stands cf= 0 and f =  t both solve KP, and they 
coincide at t = 0), and one must interpret { a i l }  in order to integrate KP in time. All of 
the KP solutions discussed in this paper satisfy a constraint: 

and this constraint eliminates the ambiguity of interpreting {ail}. Ablowitz & Villarroel 
(1991) studied this and related constraints. 

A detailed derivation of the KP equation can be found in Segur & Finkel (1985), or 
elsewhere. Briefly, one begins with Stokes’ (1847) equations for surface waves on an 
inviscid incompressible fluid resting on a horizontal bed under a constant gravitational 
force, g.  Imposing the three assumptions above yields at leading order the linear one- 
dimensional wave equation, whose solution consists of left-going and right-going 
waves, each travelling with speed (gh)’I2, where h is the mean depth of the fluid. Each 
set of waves, of course, has permanent form at this order (i.e. for short times). Over 
longer times, in a coordinate system moving with (say) the right-going waves, one 
observes that the right-going waves evolve slowly, due to the three small effects that 
were neglected at leading order. The last three terms in the KP equation represent the 
effect on this slow evolution of (i) weak nonlinearity, (ii) weak dispersion, and (iii) weak 
two-dimensionality . 

Let {X, Y,Z) represent spatial coordinates in a fixed laboratory frame with 2 
vertical, let T be time, let q(X,  Y ,  T )  measure the elevation of the fluid surface above 
its mean level, and let e 4 1 be a formal small parameter related to the assumptions 
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above. The scaled variables in KP can be related to the laboratory coordinates as 
follows : 

SY S 3 / 2 x  3S . r  , y = -  t = -  f = -+ 0 ( S 2 ) .  
s ' / ' ( X - ( ~ ~ ) ' / ~ T )  

h h '  6h ' 2h 
X =  

This change of coordinates can be performed in more than one way; the choice used 
here is slightly unconventional, and it differs from that in Part 1 : ordinarily one sets 
t = ~ ~ / ~ ( g h ) l / ~ T / 6 h .  Either choice leads to a KP equation, but the solution must be 
interpreted slightly differently in the two cases. The current choice is more natural for 
our experimental configuration, but the main motivation for this choice is that it 
simplifies the surface-fitting algorithm presented in Appendix B. 

As noted above, the KP equation is an approximate model of water waves for 6 < 1.  
In order to compare with definite experiments, we set s = 1 in this paper. To justify 
this, we note that the KP equation is invariant under the scaling 

x+ax, y+a2y, t+a3t, f+a--y (3) 

Applying this scaling to (2)  without the O ( 2 )  terms, with a2 = S ,  amounts to setting 
s = 1 there. As a consequence, some free parameters in the solutions described below 
must be small for the validity of the approximation. 

Krichever (1977) showed that the KP equation admits a huge family of exact 
solutions in the form 

(4) Ax,  y, t )  = 2 3: In 0, 

where 0 is a Riemann theta function of genus N .  Here N identifies the number of 
independent phases in the solution, and f is a quasi-periodic function of these N phases. 
(Recall that 'quasi-periodic' means that f i s  periodic in each of the N phases, if the 
other N -  1 phases are held fixed.) In the simplest case, N = 1 and (4) reproduces the 
familiar cnoidal wave (e.g. Wiegel 1960). The solutions of interest in this paper have 
N = 2, and 0 is given by a double Fourier series: 

m m  

0(q5', q52; B) = C C exp [!j(m2b + 2mnbh + n2(bh2 + d ) )  + i(mq5, + nq5,)], ( 5 )  
m=-m n=-m 

where the phases q51 and q52 are given by 

q5j=pjx+v jy+uj t+@j ( j =  1,2), (6) 

{Q1, G2} are arbitrary phase constants, and the real-valued parameters (b, A, d), which 
define the elements of the Riemann matrix (see Segur & Finkel 1985), satisfy the 
following constraints : 

-CO < b < 0, 0 < h < 1 ,  -CO < d<b( l -A ' ) .  (7)  

Actually, the constraint on h can be tightened to [0 < h d 3. Even so, we use (7)  
because it allows us to assume that pl/p2 2 0, which simplifies the algorithm in 
Appendix B. For solutions of genus 2, formal asymptotic validity of the KP model of 
water waves requires the limit (pj + 0, with (vj /pi) and (wj/p;) finite}. However, we will 
demonstrate reasonable agreement between theory and experiment even for values of 
(p1,p2} that are not very small. 

The eight free parameters of a real-valued KP solution of genus 2 are 
{b, A, d,pl,p2, vz; Q1, @,}. As noted by Dubrovin (1981) and by Segur & Finkel (1985) ,  
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the parameters can be selected as follows: (i) choose {b, A, d) to satisfy (7); (ii) choose 
,u2 as an arbitrary positive number, and v2 as an arbitrary real number; (ii) choose 
('pl/,u2) so that a sixth-order polynomial in ('p1/p2) is positive (the polynomial can be 
found in Dubrovin 1981 or in Segur & Finkel 1985); then the square root of the 
polynomial yields v l ;  (iv) once v1 is known, then w1 and w2 can be found explicitly in 
terms of {p1, p2> ; (v) choose { Ql, Q2} as arbitrary real numbers, but since they are phase 
constants, it is sufficient to permit only 

0 < Qj < 27t ( j =  1,2). 

Every such choice of parameters yields a KP solution of genus 2 that is real-valued, 
that is periodic in two spatial directions and in time, and that propagates without 
change in form. The velocity of propagation (in KP coordinates) is given by 

We obtain KP solutions using a FORTRAN code named DELTA. The code is available to 
interested readers through an anonymous f t p  site; see Appendix A for details. 

Symmetric solutions of genus 2 are obtained by imposing three additional restrictions 
on these parameters : 

d = b(l -A2) ,  ('pl/p2) = 1, v2 = -vl .  (9) 

It follows from these that w2 = wl, and that the KP solution is invariant under the 
transformation {y + - y, x + x, t + t>. Among the KP solutions of genus 2, symmetric 
waves are special in at least three ways : (i) a symmetric wave propagates purely in the 
x-direction, because dy/dt = 0 in (8); (ii) a symmetric wave is specified by only (3 +2> 
free parameters, instead of by {6+2}, because of (9); and (iii) a symmetric wave is 
periodic in the x- and y-directions. 

Symmetric solutions were the main focus of the work in Part 1, but not here. 

3. Experimental programme and typical results 
The experimental programme was similar to that described in Part 1 and identical 

to that described briefly in Hammack et al. (1991). Experiments were performed at the 
Coastal Engineering Research Center (CERC), US Army Engineer Waterways 
Experiment Station, Vicksburg MS. We used a basin, whose planform is shown 
schematically in figure 2, that comprised a uniform-depth section 12.55 m long and 
26.52 m wide, and a section with a gently sloping (1 : 30) beach that absorbed most 
of the incident wave energy. In the uniform-depth section, the still water depth was 
20cmk3mm. 

A segmented wavemaker with 58 piston-type paddles, each 45.7 cm wide, spanned 
the wide wall opposite the beach. The wavemaker is described in detail by Scheffner 
(1988), and the wavemaker motion is described in Part 1. Briefly, the wavemaker was 
programmed to generate a superposition of two cnoidal wavetrains with different 
directions of propagation. In the current experiments, we allowed the wavelengths 
and/or amplitudes of the two cnoidal waves to differ, so that the resulting two- 
dimensional wave patterns would be asymmetric. The nomenclature of our 
experiments, e.g. KPaabbcc-AABBCC, is based on programming parameters for the 
wavemaker. The aa and AA represent the phase lags in degrees between adjacent 
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b-26.52 m.-d 

X 

12.55 m 

10 0 

FIGURE 2. Schematic (planform) view of the wave basin, showing its segmented wavemaker ( NW), 
uniform-depth section (h  = 20 cm), and 1 : 30 sloping beach section. The locations of the wave gauges 
were as follows: 

gauge x(m) Y(m) gauge Jm) Y(m) gauge X(m) Y(m) 
1 8 -8 2 8 -6 3 8 -4 
4 8 -2 5 8 0 6 8 2 
7 8 4 8 8 6 9 8 8 

10 2 0 11 6.5 0 12 7 0 
13 7.5 0 14 8.5 0 15 9 0 
16 9.5 0 17 13 0 18 16 0 

paddles of the segmented wavemaker for each of the cnoidal wavetrains; the bb and 
BB are the wavelengths in m for each of the cnoidal wavetrains ; and the cc and CC are 
crest amplitudes (i.e. maximum elevations above the mean water level) in cm for each 
of the cnoidal wavetrains. Ordinarily, the wavelengths and amplitudes of the two- 
dimensional wave patterns that resulted from these inputs differed slightly from these 
values. A 10 s-ramp was applied to the start of each command signal driving the 
wavemaker to protect the mechanical system from sudden starts. Hence, there is a 
10 s transient period at each site in the basin before the programmed waves arrived. 

Our primary means of wave measurement was a linear array of nine wave gauges 
that was parallel to, and 8 m from, the wavemaker astride the basin centreline (see 
figure 2). The nine capacitance-type gauges, spaced at 2 m  intervals, measured the 
elevation of the water surface. A second array of similar gauges was placed normal to 
the wavemaker along the basin centreline. It contained eight gauges (one shared with 
the first array) in the uniform-depth section; seven spaced at 0.5 m intervals beginning 
6.5m from the wavemaker, and one 2 m  from the wavemaker. (This array also 
contained two gauges in the sloping-beach section; data from these gauges are not 
reported here.) The wave gauges were calibrated and recording began in a quiescent 
basin immediately prior to starting the wavemaker. Continuous-time signals for 100 s 
were obtained from all 18 gauges; these signals were low-pass filtered using an 8-pole 
Butterworth filter with a 10 Hz cutoff, and then digitized to produce 25 Hz discrete- 
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time data. The algorithm to fit KP solutions to wave data, described in detail in 
Appendix B, is based solely on data from the nine-gauge array; i.e. we make no use of 
the wavemaker parameters, which are given in the experiment label. As stated earlier, 
the algorithm was designed in this way so that it could also be used for waves of 
unknown origin. Data from the second array are used in $4 to test predictions of the 
fitted solutions. 

Wavefields were also measured qualitatively using two Hasselblad cameras, placed 
6 m apart astride the basin centreline and 7 m above the nine-gauge array. The cameras 
took simultaneous overlapping pictures of the water surface in a darkened room using 
four 880 W-s strobe lights located on the beach and pointing toward the wavemaker. 
(The wave gauges were removed from the basin during photography.) The two 
photographs were then combined to form a mosaic, like those in figure 1. All 
photographs were printed so as to maintain the same horizontal scale, which is 
indicated by the (+) marks painted on the basin floor at 1 m intervals. The small, but 
measurable, differences in spacing between (+) marks apparent in figure 1 resulted 
from optical distortions by the waves, which acted like moving lenses. This distortion 
prevented us from using the overhead photographs to measure spatial wavelengths 
quantitatively. 

Fifteen experiments on asymmetric waves were conducted in the set under discussion. 
In each experiment, a two-dimensional spatially periodic wave pattern was created at 
one end of the tank. The entire wave pattern propagated across the tank with nearly 
permanent form, it was recorded as it swept by the array of gauges, and then it was 
mostly absorbed on the sloping beach. 

Figure 1 shows clear photographic evidence that two-dimensional approximately 
periodic waves exist in shallow water. Photographs of three different wave patterns, 
corresponding to three experiments are shown. Each wave pattern propagates from top 
to bottom in the photos; the front of each wave crest appears bright, while the back 
appears dark. Some of the bright-dark boundaries in figure 1 (a) are particularly sharp, 
indicating that these wave crests are particularly steep, and close to breaking. Close 
inspection of figure 1 (a) also shows that on the front faces of these steep waves are 
capillary waves that appear to be radiating from the crests, as expected for near- 
breaking waves. Thus, even though the KP equation is asymptotically valid only for 
waves of small amplitude, figure 1 (a) clearly demonstrates that two-dimensional, 
approximately periodic waves exist even at large amplitudes. The existence and 
stability of these waves seem to persist well beyond the putative range of validity of the 
KP model. 

The wave pattern in figure 1 (a) is symmetric, like those discussed in Part 1 ,  and the 
pattern propagates directly downward in the photograph, i.e. in the x-direction. The 
wave pattern in figure l(b) is slightly asymmetric, and that in figure l ( c )  is strongly 
asymmetric. Asymmetric waves propagate in directions oblique to the x-direction. A 
feature common to all of the waves in all of our experiments, including those in figure 
1, is the basic hexagonal shape of the wave pattern. The basic template has a broad 
flat trough surrounded by six relatively narrow wave crests. One such hexagon is drawn 
in figure 1 (b). The wave crests opposite each other in this hexagon are parallel, they are 
equal in length and in wave amplitude, and they can be identified with each other in 
order to reproduce the periodic pattern, i.e. one can tile the plane with copies of this 
basic hexagon. 

Figure 3 shows typical data obtained from the nine-gauge array for three experiments 
on asymmetric waves, including two that were photographed in figure 1 (b, c). (Note 
that the waves shown in figure 1 (b, c) represent about 3 s of data in figure 3 (a, b).) The 
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100 s records show an initially quiescent water level and the subsequent arrival of the 
generated wave pattern, whose first 10 s exhibit a transient caused by the ramped start 
of the wavemaker. Data taken during these intervals are excluded in subsequent 
analysis. (We note also that some wave reflection undoubtedly occurs on the 1 : 30 
sloping beach, leading to small standing-wave components in the wave records. No 
attempt has been made to remove reflected waves from the data.) At first glance, data 
at each gauge site may appear to be periodic, especially in figure 3 (b); however, careful 
examination shows that the periodicity is not exact, which is characteristic of quasi- 
periodic waves. 

Figure 4 shows the amplitude-frequency spectrum of each of the wave records 
shown in figure 3(b). (The spectral amplitude is the modulus of the fast Fourier 
transform, or FFT, of the data. For convenience, we will refer to these amplitudes as 
FFTs.) To save space, we omit the spectra for the other experiments shown in figure 
3, but these spectra are qualitatively similar to those shown here. Figure 4 shows clearly 
the characteristic signatures of two-dimensional nonlinear two-phase waves : each of 
the three FFTs shows two dominant frequencies, plus their harmonics and some sum 
and difference frequencies. As one moves from the FFT of one wave record to another 
within each experiment, the amount of energy (i.e. square of the spectral amplitude) at 
each frequency changes, but the total energy is always distributed among the same two 
frequencies, plus their harmonics. In this way, the FFTs for each experiment show that 
all of the gauges measured one-dimensional slices through the same two-dimensional 
wave pattern. The photographs in figure 1 (b, c) show clearly the spatial pattern of two- 
dimensional two-phase waves, so one expects temporal FFTs like those in figure 4. 
However, based solely on the FFTs of wave-gauge data we could infer the following 
information directly. 

(i) The wave pattern has two phases (or possibly more than two in degenerate cases, 
but with only two independent frequencies among the phases): 

(ii) the wave pattern is nonlinear, because energies at harmonics as well as at the sum 
and difference frequencies are significant. 

The fact that the same two frequencies are measured at every gauge, with different 
energy levels, suggests that the wave pattern might be two-dimensional, but it does not 
establish the two-dimensionality conclusively. If the wave pattern is genuinely two- 
dimensional with exactly two phases, then necessarily it is stationary in some uniformly 
translating coordinate system; i.e. it must be a wave of permanent form. 

Figure 4 also lists the numerical values of the two fundamental frequencies measured 
in the experiment. The two-dimensional wave patterns shown in figure 1 are periodic, 
but the one-dimensional wave records in figure 3 are not periodic unless these two 
frequencies are rationally related. Since the frequencies listed in figure 4 were obtained 
numerically, they are necessarily rationally related. However, for experiment 
KP220203-110403, the period implied by the two frequencies exceeds 600 s, so this 
exact periodicity is irrelevant for the 100 s of recorded data, which are effectively quasi- 
periodic. 

We note finally that quasi-periodic functions also arise in the theory of dynamical 
systems (e.g. Guckenheimer & Holmes 1983), where quasi-periodic behaviour often 
suggests incipient instability and chaos (Piexoto 1962). No such instability is suggested 
from the quasi-periodicity seen in figure 3. These data are quasi-periodic only because 
the data are taken from a doubly periodic function, along a line at an irrational angle 
from a direction of periodicity. The water waves being measured seem to be 
remarkably stable. 
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FIGURE 3. Data from the nine-gauge array, for three asymmetric wave patterns, including two shown 
in figures 1 (b, c) Experiment: (a) KP400203-300303; (b) KP220203-110403; (c) KP300102-30.803. 
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FIGURE 4. FFTs (periodograms) in T of the wave records shown in figure 3(b) for experiment 
KP220203-110403. Every FFT shows energy at the same two frequencies Cr, = 0.36 Hz, f, = 0.67 
Hz), plus their harmonics. The dominant harmonics have been identified in one FFT. 

4. Comparison of theory and experiment 
In Appendix B, we present an algorithm to find the KP solution of genus 2 that best 

fits experimental data like those shown in figure 3 .  Here is a brief summary of the 
algorithm. Recall from 92 that a KP solution of genus 2 is specified by eight real-valued 
parameters. Four of these (pl, p,, ul,  v,) are wavenumbers that determine the overall 
spatial structure of the wave pattern. Two of them are easy to find: (p1,p2) are 
proportional to the two frequencies identified in figure 4. Once the spatial structure is 
known, then one varies (b, d, A)  in order to match (as closely as possible) the observed 
maximum and minimum amplitudes, and the known spatial structure. Then one 
determines the two phase constants (Q1, @,) by minimizing the r.m.s. (or L,) error for 
the entire wave pattern. Finally, with good approximations to the eight KP parameters 
determined in this way, one selects final values for all eight parameters by minimizing 
the r.m.s.-error for the wave pattern again. (Thus, the KP solution found in this way 
is ‘best’ in the sense of least r.m.s.-error.) 

This algorithm was used to find the best KP solution for each of fifteen experiments 
with asymmetric wave patterns. We begin our discussion of results with the question: 
How accurately does the best KP solution represent the data used to select that 
solution? For conciseness, we concentrate on the three experiments shown in figure 3. 
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FIGURE 5 .  Detailed comparison of measured wave records (-) with the best KP solution (......) 
at the same locations, for 20 s of data from experiment KP400203-300303. The comparison began 
30 s into the experiment. 

4.1. Surface-Jtting 
For the experiment shown in figures 1 (b) and 3 (a), figure 5 shows a comparison of the 
measured data to the best KP solution at the same locations, for 20 s of data, and for 
all of the gauges in the nine-gauge array. (Most of our comparisons begin 30 s into the 
recorded data in order to exclude the quiescent and transient intervals, and last for 
20 s. The agreement between theory and experiment is largely independent of when we 
start the comparison and how long we compare.) The agreement between KP theory 
and experimental data in figure 5 is perfect nowhere, but it is fairly good everywhere. 
The KP solution captures the overall structure of the wave pattern; it describes the 
phase information, such as zero-crossings, particularly well. Note especially the 
amplitudes of the waves in figure 5.  From figure 3, the maximum crest-to-trough height 
( H )  for this wave pattern is 11.23 cm., which corresponds to a wave height-to-depth 
ratio (H/h)  of 0.56. Peregrine (1983) discusses criteria for wavebreaking in shallow 
water (e.g. H / h  = 0.77 at breaking). The wave pattern shown here is not breaking, but 
it is not far from the range of breaking waves; certainly the wave amplitudes are not 
especially small. This result is similar to that found in Part 1 for symmetric waves : KP 
theory agrees well with experimental measurements well outside its putative range of 
validity. 

Figure 6 shows another comparison of theory and experiment, for the wave pattern 
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FIGURE 6. Detailed comparison of measured wave records (--) with the best KP solution 
(. . . . . .), for 20 s of data from experiment KP220203-110403, beginning at 30 s. 

shown in figures 1 (c) and 3(b). This pattern is strongly asymmetric, but again the best 
KP solution gives good agreement everywhere. Figure 3 (b) shows that these waves are 
almost periodic, with an almost-period of about 20s. Figure 6 shows that the KP 
solution has essentially the same behaviour. (In fact, the comparison time of 20 s was 
chosen to contain the almost-period of these waves.) Because this experiment was also 
photographed (in figure 1 c),  we can compare the KP solution with the photograph as 
well. In figure 7, contour lines of the best KP solution are superimposed on the 
photograph. This comparison contains different information than that in figure 6 :  X 
is held fixed while T and Y vary in figure 6 ,  whereas T is held fixed while X and Y vary 
in figure 7. Moreover, the photograph was not used to find the KP solution, so figure 
7 is not surface-fitting. Even so, figure 7 leads to a conclusion similar to that obtained 
from figures 5 and 6 :  the best KP solution describes the observed wave pattern with 
reasonable accuracy everywhere. 

The last detailed comparison, for KP300102-30 - 803, has been included because the 
wave records from gauges 3 and 7 showed a slow increase in amplitude over the course 
of this experiment, as seen in figure 3 (c). While it is clear that the data in figure 3 (b) 
are almost periodic, this is much less clear in figure 3(c), so this experiment provides 
a strong test of the theory. Figure 8(a)  shows a comparison of the measured wave 
records with the best KP solution, for 20 s of data starting at 30 s. These waves have 
smaller amplitudes than those in other experiments in this series, so the waves are more 
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FIGURE 7. For experiment KP220203-110403, contour lines of the best KP solution (identified in 
figure 6) are superimposed on the photograph of figure 1 (c). The experiment and the KP solution are 
the same as in figure 6, but different data are compared. The direction of propagation of the entire 
wave pattern, based on (8) is shown by the arrow. 

(4 Gauge 

t 

Gauge 

1 

2 

3 

4 

5 

6 

7 
I 

8 

30 35 40 45 50 70 15 80 85 90 

Time (s) Time (s) 

FIGURE 8. For experiment KP300102-30.803, a detailed comparison of measured wave records 
(-) with the best KP solution (. . . . . .), during two different time intervals : (a) 20 s of data beginning 
at 30 s; (b) 20 s of data beginning at 70 s. 
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nearly sinusoidal, and the agreement between theory and experiment is slightly better 
than average. Note that the wave amplitudes for gauges 3 and 7 increase, even in this 
20 s interval. Note also that for gauge 3, the KP  solution captures this behaviour. 

Figure 8(b) shows a second comparison for the same experiment, KP300102-30.803, 
starting at 70 s. It is important to note that the KP  solution used here is the same KP 
solution as that in figure 8(u), except that the two phase variables, and G2, were 
reoptimized for the new data, which were measured during a different time interval. In 
other words, figure 8(b) is not a surface-fit; it is a prediction of the theory, based on 
the surface-fit shown in figure 8 (a). Figure 3 (c) shows that the data measured at 20 s 
differ considerably from those measured at 70 s, but the same KP solution describes 
both data sets with reasonable accuracy. This good agreement implies that the data in 
figure 3(c) are almost periodic, but the almost-period is so much longer than the 
80 s of data that this feature is not apparent in the measured data. We mention that we 
also applied the optimization algorithm to the data in figure 8(b), to find the best KP 
solution for those data. The KP solution found was nearly identical with that obtained 
from the data in figure 8(u), except for changes in rP, and Q2. 

4.2. Analysis of errors 
Table 1 summarizes the comparisons between KP theory and experiments for fifteen 
experiments involving asymmetric waves. The parameters of the best K P  solutions are 
listed, as well as the maximum and minimum measured wave amplitudes, and two 
measures of error, which we now define. 

For a given experiment, let u ( x , y , t )  denote the measured wave amplitude at 
location (x, y ,  t),  normalized as in (2), and let f ( x ,  y ,  t) denote the value of the best KP  
solution at the same location. One measure of their discrepancy is v, where 

the sum is taken over the wave records from the nine-gauge array, and L is the length 
of the measured wave records. (We generally used 20 s of data, but varying the length 
of the data string did not significantly affect v.) A second measure of error isfmu,/umu,, 
the ratio of maximum wave amplitudes according to theory and experiment. (Step 4 of 
the optimization algorithm effectively minimizes (1 -fmuz/~,,,)2, but then the last step 
of the algorithm usually forces it away from its minimal value, leavingf,,,.u,,, as a 
non-trivial measure of error.) 

According to table 1, the KP  model along with the optimization algorithm 
consistently underpredicted the maximum wave amplitude. This error was more 
serious in some experiments than in others, but the model predicted a maximum 
amplitude that was too small in every experiment. This consistent underprediction was 
apparently caused by using the norm in (10). In Part 1 we used a different norm, and 
matched the maximum amplitudes well. Beyond this simple observation, we found no 
striking trends in the data. For all fifteen experiments, cr stayed within a fairly narrow 
range: 0.235 < rs < 0.402, with a mean value of E(c) = 0.302. (For comparison, note 
that the trivial theory, in whichflx, y ,  t )  = 0, gives v = 1 in (lo).) We do not suggest 
from this relatively narrow range of values that the theory never breaks down, but only 
that our experiments did not demonstrate the breakdown. 

As mentioned in $2, the KP  model of water waves is based on three assumptions: 
(i) moderate wave amplitudes ; (ii) shallow water; and (iii) nearly one-dimensional 
wave propagation. An important question is how v depends on each of these three 
effects. Consider first the wave amplitudes, which we characterize by the maximum 
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crest-to-trough height, divided by the undisturbed water depth, which was 20 cm in 
these experiments. (This choice is based on the columns entitled rmax and rmin in table 
1, and is somewhat arbitrary. We also tried using rmax, with similar results. Using (T, 

instead of ( T ~  or some other measure of error, is also arbitrary.) For thejth experiment, 
let 

From table 1, 0.341 < A j  < 0.561, with a mean value, E(A) = 0.492. The correlation 
coefficient between A and (T in our fifteen experiments is 

Aj: = [ rmas , j - rmtn , j I /h .  (1 1) 

15 

This positive correlation shows that KP theory becomes less accurate as wave 
amplitudes increase, as expected. 

It remains to test the assumptions of shallow water, and of nearly one-dimensional 
waves. Unfortunately, our data set (based on fifteen experiments) was too small to 
carry out these tests conclusively. 

4.3. Predictions 
Knowing that the KP model provides reasonably accurate descriptions of the 
measured wavefields, we now turn to other comparisons between theory and 
experiments. For each experiment, the best KP solution is now fixed, with no 
remaining free parameters ; hence, the comparisons that follow involve predictions of 
the theory, rather than just surface-fitting. 

A fundamental assertion in this paper is that the waves under study propagate with 
nearly permanent form. Yet data from the nine-gauge array cannot test this assertion, 
because all nine gauges are the same distance from the wavemaker. Limited insight into 
possible wave evolution is provided by the second gauge array, which was placed 
perpendicular to the first array (see figure 2). We show next that, to within our 
experimental error, the waves did not evolve significantly over the 7.5 m span of the 
second array. Again, for simplicity, we concentrate on the three experiments shown in 
figure 3. 

For each experiment, the second gauge array provides eight wave records like those 
in figure 3. Figure 9 shows the temporal FFT of each of the seven new wave records 
for experiment KP220203-110403, featured in figures 1 (c), 3 (b), and 4. (Note from 
figure 2 that gauge 5 was included in both arrays. In presenting the data from the 
second array, we omit gauge 5 because its data were already presented. We also omit 
the data from the other experiments, which data were qualitatively similar to those 
shown in figure 9.) Note that every gauge in the second array recorded the same two 
dominant frequencies, and therefore the same values for p1 and p2; in other words, pl 
and pz showed no measurable evolution as the waves propagated away from the 
wavemaker. 

Figure 10 shows the actual wave records from the seven new gauges, for experiment 
KP220203-110403. The KP solution that was already selected, based on data from the 
nine-gauge array, predicts the data that each of these seven gauges should measure; 
these predictions are also shown in figure 10. We emphasize that no free parameters 
were available in the comparisons in figure 10; these are predictions rather than surface- 
fits. The overall error ( ( T ~ )  for the seven-gauge array is comparable to that for the nine- 
gauge array ((T), even though data from the latter array were used to select the KP 



Gauge 

10 A/. c C ^  

a A.. 
11 

A -  

12 
A A -  A -  

13 
- I -  A -  

0 0.5 1 .o 1.5 2.0 

Frequency (Hz) 

FIGURE 9. Temporal FFTs of the seven wave records obtained from the second gauge array, for 
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FIGURE 10. Superposition of the measured wave records from the seven-gauge array (-), and the 
wave pattern predicted by the KP solution chosen to fit the data from the nine-gauge array (. . . . . .), 
for experiment KP220203-110403. 
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Theoretical Experimental 

Ux Case dxldt dYldt dxldt dYIdt U 

000203-380203 -0.141 -1.484 -0.164 -1.503 0.297 0.326 
100203- 150203 -0.087 -0.202 -0.115 -0.171 0.369 0.403 
050203-050303 -0.083 -1.771 -0.084 -1.953 0.402 0.422 
150203-050303 0.067 -0.607 0.060 -0.609 0.348 0.358 
250203- 100303 0.231 -0.154 0.219 -0.167 0.312 0.350 
100203-250303 0.123 - 1.452 0.112 -1.460 0.305 0.307 
200203-200303 0.271 -0.799 0.249 -0.805 0.312 0.316 
300203-200303 0.436 -0.335 0.419 -0.338 0.267 0.314 
220203-1 10403 0.251 -0.688 0.243 -0.685 0.281 0.319 
350203-1 50303 0.403 0.133 0.387 0.126 0.283 0.299 
400203-300303 0.800 -0.340 0.786 -0.333 0.308 0.282 
300203-300102 -0.286 1.302 -0.291 1.308 0.235 0.287 
300203-30.803 -0.264 1.283 -0.277 1.293 0.311 0.316 
250203-450 102 -0.129 0.646 -0.144 0.663 0.252 0.305 
300102-30.803 -0.618 0.008 -0.612 0.006 0.248 0.294 

TABLE 2. Comparison between theory and experiment of two components of the velocity of 
propagation of the wave pattern, and the overall error from the nine-gauge array (u) and the seven- 
gauge array (uX) 

solution. For all fifteen experiments on asymmetric waves, table 2 lists an overall error 
(a) for the nine-gauge array used to select the KP solution, and another (a,) for the 
seven-gauge array, whose measurements were predicted by that KP solution. Within 
each experiment, these errors are comparable; usually a, is slightly larger than a, but 
for experiment KP400203-300303, the error for the seven-gauge array (a,) is actually 
smaller than that for the nine-gauge array (a). This comparison supports the claim that 
the measured waves did not evolve significantly over the length of our test section-. 

Approximate wavelengths in the X-direction for a KP solution can be obtained from 
{,uu,,,u2}, using Li z 2xh/,ui. For experiment KP220203-110403, this gives X-wavelengths 
of about 2 m and 4 m, consistent with the cnoidal wavelengths input to the wavemaker. 
Note that gauge 10 is only 2 m from the wavemaker, so figure 10 shows that the wave 
being measured achieved its apparently permanent form within one wavelength of the 
wavemaker, and then retained that form at least for the length of the test section of the 
tank (7.5 m). In all fifteen experiments, we always found that the wave patterns 
achieved their apparently permanent form within 2 m  of the wavemaker, and then 
retained that form over the length of our test section. We found no clear evidence of 
wave evolution. 

Next, we consider the (constant) velocity of propagation of the waves. This velocity 
cannot be inferred from the photographs in figure 1 .  The KP model predicts it, in (8), 
and the velocity vector shown in figure 7 was found in this way. However, the velocity 
also can be obtained directly from the wave records, without using (8), as follows. For 
a particular experiment, find the KP solution that best fits the data measured during a 
20 s interval starting at time ( T ) .  If the wave has permanent form, then at a slightly later 
time ( T + A T ) ,  this wave pattern will have translated in space, and what had been 
observed at location ( X - A X ,  Y - A Y )  in the fixed (laboratory) frame now will be 
observed at (X,  Y ) ,  for some { A X , A Y } .  In order to measure { A X , A Y } ,  use (2) to 
replace (6)  by 

(13) $j = ,u~(x - AX/h)  + v ~ (  y - A Y / h )  + uj( t  - AX/6h) + @i ( j  = 1,2) 
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and then minimize u2 at the new time (i.e. over 20 s starting at T + A T )  by varying 
( A X , A Y } ,  holding fixed all the other parameters of the solution. In this way, one 
obtains empirically {AX,  A Y }  for a given AT.  For a wave of permanent form, ( A X / A T )  
and ( A Y / A T )  do not depend on AT,  and it follows from (2) that 

Because the KP solution is spatially periodic, {AX,  A Y }  are ambiguous in the sense that 
one can add to them an integer number of spatial periods of the wave pattern. One 
eliminates this discrete ambiguity by requiring that AX+O, AY+O as AT+O; then 
( A X , A Y }  are unambiguous for A T  small enough. On the other hand, small 
measurement errors become relatively important if A T  is too small. Balancing these 
competing effects, we chose A T  = 1.2 s for these experiments. 

Table 2 lists the two components of the velocity of propagation of the wave pattern, 
according to KP theory (8) and according to direct measurement (14), for all fifteen 
experiments. The agreement is remarkably good; in many cases, the two velocities 
agree to within a few percent. The agreement becomes even more impressive when one 
recalls that these velocities are themselves the small deviations from the basic wave 
speed, (gh)'/', which is inherent in the (moving) KP coordinate system. 

5. Oceanic observations of hexagonal waves in shallow water 
The central point of this paper is the following. In shallow water of uniform depth, 

there exist two-dimensional periodic waves with finite amplitudes and nearly permanent 
form. The spatial pattern of these waves is hexagonal, as shown in figure 1. The waves 
are easy to generate in the laboratory, and they are apparently stable. 

KP solutions of genus 2 describe these waves with reasonable accuracy over a range 
of parameters that is larger than the putative range of validity of the KP model. The 
robustness of the KP model is a pleasant surprise, but we suspect that the existence 
of these waves is independent of the validity of the KP model. Rather, we conjecture 
that the hexagonal wave pattern observed in figure 1 is the basic qualitative pattern for 
periodic waves of permanent form in shallow water. More precisely, we conjecture that 
if one seeks genuinely two-dimensional wave patterns of finite amplitude that are 
periodic and that propagate with permanent form in shallow water of uniform depth, 
then one will almost certainly find hexagonal wave patterns with flat troughs and 
narrow crests, like those in figure 1. If this conjecture is correct, then one would expect 
to find waves like these in oceanic settings. In this section, we present some oceanic 
observations suggesting that wave patterns like these actually occur. 

Remark : Some apparent counter-examples to this conjecture are actually limiting 
cases of it. We mention specifically: (i) cnoidal waves, in which the wave period in one 
direction becomes infinitely long ; (ii) waves of infinitesimal amplitude, for which the 
hexagon degenerates to a parallelogram, and the waves become sinusoidal ; and (iii) the 
oblique interaction of two solutions, which is not periodic, but is another limiting case 
of hexagonal waves. 

The first example, shown in figure 11, is an aerial photograph of the coastal zone 
taken near Jones Inlet on Long Island near New York City. At the top of the 
photograph one can identify a road, some buildings, the beach, and the surf zone in 
which waves are breaking. Beyond the surf zone, in the bottom half of the photograph, 
one sees clearly that the surface wave patterns are two-dimensional and approximately 
periodic, like the waves in figure 1, and that many of the wave patterns are hexagonal. 
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FIGURE 11. Aerial photograph of waves off the southern coast of Long Island. The beach is between 
Lido Beach and Point Lookout, west of Jones Inlet. Beyond the surf zone, the wave patterns are two- 
dimensional, and approximately periodic. They have flat troughs, sharp crests, and approximately 
hexagonal shape. 

The second example, shown in figure 12, is a now well-known photograph taken by 
Terry Toedtemeier of two waves interacting in shallow water off the Oregon coast. This 
photograph is often shown to illustrate the interaction of two solitons, with the 
required phase shift (i.e. a spatial shift of each wave crest as a result of the nonlinear 
interaction of the two waves). However, each of the most prominent wave crests in 
figure 12 is actually part of a train of periodic waves. The next crest in each train is 
discernible in the figure, but the strongest evidence of the periodicity of the wavefield 
is that Mr Toedtemeier told us that the waves were periodic. He also noted that none 
of the other wave interactions, before or after the one shown in figure 12, was nearly 
as dramatic as the one shown. Thus, these waves were only approximately periodic, but 
they were certainly two-dimensional, and they exhibited flat troughs and sharp crests. 
In our model, the two long crests and the one short crest shown in the figure should 
be viewed as the sides of two adjacent hexagons. 

The last example, shown in figure 13, is an aerial photograph of waves off the outer 
banks of North Carolina taken by Carl Miller during a major storm (the ‘Hallowe’en 
storm of 1991 ’). The waves in this photograph were enormous - wave gauges located 
in 10 m deep water measured waves with heights exceeding 5 m and periods of 20 s. If 
we take the wave speed to be (gh)llz as a rough approximation, then a wave period of 
20 s corresponds to a wavelength of about 200 m. (Assigning a width of 5 m to the road 
visible along the coast and then scaling also suggests wavelengths on the order of 
100-200 m). The photograph itself suggests that virtually every wave crest was 
breaking, and that the beach on the right of the photo was completely flooded. These 
waves were apparently far outside the range of validity of the KP model. Moreover, 
these waves undoubtedly did not have permanent form, so that KP solutions of genus 
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FIGURE 12. Oblique nonlinear interaction of two waves in shallow water, off the coast of Oregon. 
The interaction occurred in water about 1 m deep. (Photograph courtesy of T. Toedtemeier.) 

FIGURE 13. Aerial photograph of waves in shallow water, south of the Oregon Inlet on Pea 
Island, off the coast of North Carolina. (Photograph courtesy of C. Miller.) 

2 would be too simple to describe them. Nevertheless, the waves in figure 13 exhibit 
some of the same features that we have now seen repeatedly: two-dimensional wave 
patterns with flat troughs and sharp crests, and with many of the crests forming 
hexagonal wave patterns. 

The photographs in figures 11, 12 and 13 suggests that approximately periodic, 
hexagonal wave patterns occur in the ocean. Without a systematic study of oceanic 
observations of waves in shallow water, we do not know whether these waves are 
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common or uncommon. We suspect that they are more common than is usually 
believed. 
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Appendix A. To obtain the program DELTA 

The KP solutions used in this paper were computed using a FORTRAN program 
named DELTA. The following instructions show how to use the UNIX ftp utility 
to transfer the file ‘delta . f ’  from the anonymous site ’ f tp . colorado. edu : / 
cuboulder/appm‘ . The indented lines are keyboard commands, with <cr > = 
carriage return. 

To log onto the f tp site, type 

You should get a prompt for a username. Type 

You will then be prompted for a password. Enter your complete email address. At this 
point, you should be logged onto the f tp site. 
You need to go to the subdirectory /cuboulder/appm. Type 

To transfer the file, type 

To quit the f tp utility, type 

f tp f tp . colorado. edu < cr > 

anonymous < cr > 

cd cuboulder/appm< cr > 

get delta. f <cr> 

quit < cr > 

Appendix B. An algorithm to find the best KP solution for a set of wave- 
gauge data 

A KP solution of genus 2 is defined by (6 + 2) parameters (b, A, d,  pl, p,, v,; @,, G2}, 
from which the other parameters of the solution (v1,w1,w2} can be deduced. The 
objective of this Appendix is to provide an effective algorithm to identify a ‘best’ set of 
KP parameters for a given set of wave records, like those in figure 3. The algorithm has 
six steps, and it makes explicit use of the fact that the time-variation of a quasi-periodic 
function, like that of ( 5 )  and (6),  corresponds to straight-line motion on a two- 
dimensional torus. 

Step 1 : Find p1 and p, 

then it follows from $2 that we seek a function of the form 
If the measured wave amplitudes can be represented by a KP solution of genus 2, 

Ax, y ,  t )  = F(pl x + vly + w1 t ,  p, x + v 2 y  + w2 t) ,  
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where F is periodic in each argument. Without loss of generality, we can require that 
each period be 271; otherwise, the precise form of F does not affect step 1. In terms of 
laboratory coordinates, after using (2) with 6 = 1, 

f = F(pl [ X -  (gh)'/'T]/h + v1 Y/h + m1 X/6h, p , [ X -  (gh)'/'T]/h + V ,  Y/h + 0, X/6h). 
(B 1) 

Each wave gauge records data as T varies, with X and Y fixed. If it records a function 
in the form (B l), then the FFT of the wave record shows energy at two frequencies, 
(gh)1/2pl and (gh)'I2p,, plus harmonics and sum- and difference-frequencies. In other 
words, one can read Ipl( and lpzl directly from FFTs of the wave records, like those in 
figure 4. Because of (7), one can always require pl/ ,u2 2 0. Because 0 is even 
[@($,, 4,) = @(-$l, --$J], one can always take p1 2 0, p2 2 0. These two symmetries 
allow us to determine p1 and ,u2 from FFTs. 

Remark. The advantage of the choice of variables in (2) is that it permits direct 
measurements of p1 and p,. With the usual choice, t = ~'/'(gh)'/'T/6h, the FFTs yield 
(p, - wJ6) and (p, - w,/6) and one must solve to find p l  and pz. We have tried both 
approaches; the final results differ only slightly, and the logic of the current approach 
is simpler. 

Step 2: Find (vll and 1v21 
In these experiments we used only nine gauges at different locations in Y, so a 

Fourier transform in Y of the data at fixed ( X ,  T )  would yield only crude estimates of 
lvll and Iv,(. We obtain more precise estimates of lvll and (vzI when the wave height is 
a quasi-periodic function of two variables, as follows. 

=. a$, + A  in the 
$,)-plane, IQl, 4,) is periodic if and only if a is rational. If a is irrational, then 

along this line F($l, 4.J never repeats exactly, but it comes arbitrarily close to every 
value taken by F($l, $,) in the periodic square. Now compare this situation to that in 
figures 1 and 3. Figure 1 shows a periodic function of two variables, and each wave 
record shown in figure 3 is taken along a straight line defined by the direction of travel 
of the wave pattern as it sweeps past the gauges. It follows that if the data in each 
record are not periodic, then a sufficiently long string of data from a single gauge would 
eventually record the entire two-dimensional wave pattern, to any desired accuracy. 
Moreover, the nine gauges sweep out nine parallel line-segments in the ($1, $,)-plane. 
If the data are not periodic, then to any desired accuracy, one can think of these nine 
line-segments as segments on the same (infinite) line, with different starting points. 

For example, in figure 3 (b), the data recorded on gauge 9 nearly coincide with those 
recorded on gauge 3, but with a time-shift of 36.8 s. This can be seen directly, by laying 
a record from gauge 9 over that from gauge 3 (but shifted by 36.8 s) and observing that 
the data nearly coincide. More quantitatively, the two data sets (with the first 20 s of 
each data-set deleted, to remove quiescent and transient intervals) have a correlation 
coefficient of p = 0.966, where 

Let F($', $J be continuous and quasi-periodic. Along the line 

and where ri(t) and qj(t) each have zero mean. Moreover, using the same time-shift 
(36.8 s), the data from gauge 8 correlate with those from gauge 2 (with p = 0.966), and 
gauge 7 reproduces the data from gauge 1 (with p = 0.975). In other words, with an 
error corresponding to a correlation coefficient of about 0.97, a shift in Y of 12 m (the 
distance between correlated gauges) is equivalent to a shift in T of 36.8 s. We have just 
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3 ,  I 

V 

FIGURE 14. FFT in Y of the wave records for experiment KP220203-110403, after extension as 
described in the text. 

demonstrated this with three pairs of gauges : 9 + 3,8 + 2,7 + 1. By this reasoning, had 
there been a ‘virtual’ gauge 10 in the shore-parallel array, it would have measured a 
signal (nearly) equal to that measured by gauge 4, but shifted by 36.8 s.  Moreover, 
virtual gauge 11 would have measured a signal corresponding to that of gauge 5,  and 
so on. Eventually, when we return to gauge 9 (at virtual gauge 15), we could start again 
by comparing its signal to that of gauge 3 again. This entire process can be repeated 
until we have shifted (in time) to the end of the data records. In addition, the data from 
a single gauge can be matched to itself in a second, independent way, and between these 
two shifts we can extend the data indefinitely. Referring again to figure 3 (b), note that 
the data from any one gauge are almost periodic, with an almost-period of 41.84 s. In 
particular, in figure 3(b) the correlation coefficient between the data, and the data 
shifted by 41.84 s averages about 0.99 for gauges 4 9 .  By making use of these two kinds 
of shifts, one can create as many virtual gauges as desired. Each shift introduces a small 
error, whose size is related to (1-p). In principle, one should stop adding virtual 
gauges when the accumulation of these errors exceeds the increased precision obtained 
from adding more gauges. Preliminary tests suggested that the break-even point for 
these data occurs at about 200 gauges; in practice, we always stopped at 200 gauges, 
including the 9 original gauges. 

Now take a FFT in Y at fixed ( X ,  T ) ,  based on 200 data points; the results are shown 
in figure 14, for experiment KP220203-110403. As in figure 4, the energy is concentrated 
in two dominant ‘ frequencies ’, plus harmonics and sum- and difference-frequencies. 
Assuming that the data represent a function of the form (lo), then these dominant 
frequencies are located at Iul/hl and Ivz/hl. In this way, the procedure provides direct 
measurement of ~ v J  and I v J .  This procedure does not specify which of the two values 
should be associated with ,ul, and which with ,u2. Until this has been resolved (in step 
3), let us call the two values I v , ~  and ( v J ,  with IvJ d I v J .  

Step 2 a Symmetric waves 
The essential requirements for step 2 are that the data be quasi-periodic, but not 

strictly periodic. If the data are periodic with a sufficiently short period, then the wave 
records from two different gauges might never look alike, for any time-shift. In 
particular, symmetric waves produce periodic wave records, and the records from 
different gauges look alike only if two of the gauges happen to be an integer number 
of Y-wavelengths apart. For symmetric (or nearly symmetric) waves, we estimate the 
Y-wavelength from a FFT based on only nine gauges. This estimate is necessarily 
crude. Consequently, for some experiments with symmetric waves, we found it 
necessary to admit two or three ‘candidate values’ for I V , ~  (= IvbJ for a symmetric 
wave), chosen from the range allowed by the nine-gauge FFT. 
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The remaining steps of the algorithm assume that the wave pattern is asymmetric, 
that the data are not strictly periodic, and that step 2 has successfully provided Iv,I and 
IvJ. (For symmetric waves, p2 = pl, v2 = - vl, so step 3 is unnecessary. Then step 4 
simplifies, because d = b( 1 - A').) 

Step 3 :  Identifv v1 and v2 
The next step is to find the signs of v, and vb, and to determine which value goes with 

pl, and which with p2. The basic idea for this step is the following. The nine-gauge 
array lies in the y-direction, and the data from its determine (vaI and IvJ. If the array 
were rotated slightly in the (x, y)-plane, then the gauges would record slightly larger y- 
wavelengths for waves coming from one side, and slightly smaller y-wavelengths for 
waves coming from the other. By comparing the values of Iv,I and (vbl obtained from 
the original and the rotated gauge-arrays, one could determine whether the associated 
waves came from the left or the right; i.e. one could determine the signs of v, and vb. 

We do not actually move the gauges to obtain the second data set, but we achieve 
approximately the same effect by processing data from successive gauges at successively 
later times. Specifically, instead of using the data from all nine gauges at the same time 
&, we use the data from thejth gauge that was recorded at time 

where AT is the time between successive measurements. (AT = 0.04 s for the 25 Hz 
sampling rate used in these experiments.) These data correspond approximately to data 
taken from a linear gauge-array whose orientation in the (x,y)-plane is rotated from 
the y-axis through an angle 

(B 3 )  
where AY is the spacing between gauges. In these experiments, AY = 2 m, so /3 = 
0.028 rad (/3 = 1.6"). With the data rearranged in this way, we repeat step 2 to obtain 
Iv:I and Ivi+l. The same procedure based on ( - A T )  yields lvJ and IuJ. From all of these, 
one can identify {IvJ,  Ivil} and {IvJ, Ivil}, because 

The direction of effective rotation (/3) is known, so knowing whether {IvJ < Iv,I < Ivil} 
or {IvJ > Iv,I > lvil} determines the sign of v,; one also finds the sign of vb in this way. 
(Note: If (v,I is small enough, then {vi,v,,v;} are not all of the same sign, and no 
combination of measured values satisfies (B 4) .  In this case, one finds that either 

If both (vaI and lvbl are small, then (B 4b)  must be modified as well.) 

= & + ( j - l ) A T ,  

p = tan-' [(gh)lI2 AT/AY 1 ,  

IvaI-Ivi I  lv i l - lva l ,  lvb l - lv i l  % I~b l - I vb l .  (B 4 4  b) 

IvaI+Iv i I  % IviI- IvaI or IvaI-Ivi I  x Ivi l+lval.  

The v-values obtained in this way also provide estimates for {pa ,pb} ,  based on 
pa % (vi - v, cos p)/sin p. 

By comparing these estimates with the values for p1 and pz obtained in step 1, one 
determines { p l ,  vl} and {p,, v,}. 

Step 4 :  Estimate {b,  A, 6) 
Once {p1,p2, v l ,  v2} are known, then the spatial structure of the wave pattern is fixed, 

and one can draw a period parallelogram in the (x,y)-plane. Next, one would like to 
choose, among all KP solutions of genus 2 with the same period parallelogram, the one 
that minimizes the r.m.s. error, 
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where u(x, y ,  t )  represents the measured data (normalized as in (2)), fix, y ,  t )  represents 
a KP solution, and the integrals are taken over a period parallelogram. In step 6, we 
do essentially this. Unfortunately, 5’ apparently has many local minima in parameter 
space, so that it is necessary to start the minimization routine close to the global 
minimum. The purpose of steps 4 and 5 is to obtain good starting values for the 
minimization in step 6. 

Let umax denote the measured maximum value of the (normalized) wave amplitude 
over the entire data set for an experiment, and umin the measured minimum value. If 
the waves were exactly periodic, then the wave amplitude would attain its maximum 
and minimum values once within each period parallelogram. As discussed in $2, 
specifying {b, A, d,pl,pu,, v2} specifies a KP solution of genus 2, up to a translation. In 
particular, these parameters determine the maximum Cf,,,) and minimum urnin) values 
of the solution, and they determine vl. Denote by v ~ , ~ ~  the value of v1 obtained from 
a particular KP solution, and by v l , m  the value of v l  measured in steps 2 and 3. Step 
4 is to minimize 

by varying {b ,  A, d), subject to (7), while holding {plr pz, v2} fixed at the values obtained 
in steps 1-3. We do this numerically, using ODRPACK as described by Boggs et al. 
(1992). 

Step 5 :  Estimate Q1 and Q2 
The KP solution is now completely specified except for a spatial translation fixed by 

the phase constants Q1 and Q2.  These constants could be obtained directly from an 
overhead photograph of the wavefield, such as those in figure 1, by making a contour 
plot of the KP solution with the same horizontal scales as the photograph, and then 
sliding one over the other until the phases match optimally. In the absence of such a 
photograph, we minimize a quantity like that in (B 5) ,  by varying {Ql, Q2} while 
holding fixed {b, A, d, pl, p2 ,  v,}. However, we cannot integrate over the entire period 
parallelogram, as in (B 5) ,  but only over the nine wave records. Using ODRPACK again, 
we minimize a’, from equation (10): 

9 L  

a’ = X 1 Mx, Y ,  t )  - u(x, Y ,  t)l2 dx/$[: [4x, y ,  t)I2 dx, 
1 0  

where L is a length of the wave record, and only {Ql, Q2} are varied. Typically, we used 
L = 20 s. 

Step 6 Find final values of all eight parameters 
The final step is to minimize a2 again, allowing all eight parameters {b ,h ,d ,p l ,  

p2 ,  va; Ql, QJ to vary simultaneously. In this paper, therefore, the ‘best’ KP solution 
for a given experiment is defined to be the one that minimizes a’. (In Part 1, we used 
a different definition for ‘best’ fit of symmetric waves.) As mentioned above, a2 has 
several local minima in this larger space, but we start near what we believe to be the 
global minimum by starting at the values for these parameters found in steps 1-5. 

Our experience has been that this six-step algorithm found the best KP solution for 
each of the fifteen available data sets for asymmetric waves. The results of the 
algorithm are discussed in $ 5.  (It also converged to the best solution for the data from 
sixteen other experiments on symmetric waves. We will present these results elsewhere.) 
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Our justification for this algorithm is that it works: for each experiment on which we 
tested it, the algorithm found a best KP solution, with an acceptable error (a). 
However, Boris Dubrovin has suggested another possible justification for the 
algorithm, as follows. (The rest of this paragraph is a series of speculations, which we 
hope to verify eventually.) Subject to some extra conditions like (l), the KP equation 
is a completely integrable Hamiltonian system, along the lines discussed by Dubrovin 
(1991, pp. 79-92). Every exact reduction of KP to a finite-dimensional system ought to 
be completely integrable as well. A KP solution of genus 2 is such a reduction, it has 
two phases, so it ought to correspond to an integrable Hamiltonian system with two 
degrees of freedom. Therefore, a specification of the general KP solution of genus 2 
ought to contain two ‘action’-type variables, and two ‘angles’. Steps 1-3 of this 
algorithm specify the spatial structure, {pl,pz, vl, v2}. The other four variables 
{b, d ;  SP,, SP2} describe the dynamical system. Step 4, which ignores phase information, 
apparently finds action-type variables {b, 4, while step 5 finds angles {SPl, SPz}. This 
argument suggests that step 4 would also work if the maximum and minimum values 
of the data set were replaced by two conserved integrals of the KP equation. In fact, 
it might work better. 
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